Amide Reduction
Get Amide Reduction essential facts below. View Videos or join the Amide Reduction discussion. Add Amide Reduction to your PopFlock.com topic list for future reference or share this resource on social media.
Amide Reduction

Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group.[1][2]

Catalytic hydrogenation

Catalytic hydrogenation can be used to reduce amides to amines; however, the process often requires high hydrogenation pressures and reaction temperatures to be effective (i.e. often requiring pressures above 197 atm and temperatures exceeding 200 °C).[1]Selective catalysts for the reaction include Copper chromite, Rhenium trioxide, and Rhenium(VII) oxide.

Non-catalytic routes to amines

Reducing agents able to affect this reaction include metal hydrides such as lithium aluminium hydride,[3][4][5][6][7] or lithium borohydride in mixed solvents of tetrahydrofuran and methanol,[8]

Reduction of amides to amines

Non-catalytic routes to aldehydes

N,N-disubstituted amides can be reduced to aldehydes by using an excess of the amide:[]

R(CO)NRR' + LiAlH4 -> RCHO + HNRR'

With further reduction the alcohol is obtained.

Some amides can be reduced to aldehydes in the Sonn-Müller method.

Hydrosilylation

A well known method for amide reduction is hydrosilylation with silyl hydrides and a suitable catalyst based on Rh, Ru, Pt, Pd, Ir, Os, Re, Mn, Mo, In, or Ti.[]

Iron catalysis by triiron dodecacarbonyl in combination with polymethylhydrosiloxane has been reported.[9]

References

  1. ^ a b Nishimura, Shigeo (2001). Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (1st ed.). Newyork: Wiley-Interscience. pp. 406-411. ISBN 9780471396987.
  2. ^ March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
  3. ^ Cope, Arthur C.; Ciganek, Engelbert (1959). "N,N-Dimethylcyclohexylmethylamine". Organic Syntheses. 39: 19. doi:10.15227/orgsyn.039.0019.
  4. ^ Wilson, C. V.; Stenberg, J. F. (1956). "Laurylmethylamine". Organic Syntheses. 36: 48. doi:10.15227/orgsyn.036.0048.
  5. ^ Moffett, Robert Bruce (1953). "2,2-Dimethylpyrrolidine". Organic Syntheses. 33: 32. doi:10.15227/orgsyn.033.0032.
  6. ^ Park, Chung Ho; Simmons, Howard E. (1974). "Macrocyclic Diimines: 1,10-Diazacylooctadecane". Organic Syntheses. 54: 88. doi:10.15227/orgsyn.054.0088.
  7. ^ Seebach, Dieter; Kalinowski, Hans-Otto; Langer, Werner; Crass, Gerhard; Wilka, Eva-Maria (1983). "Chiral Media for Asymmetric Solvent Inductions". Organic Syntheses. 61: 24. doi:10.15227/orgsyn.061.0024.
  8. ^ Ookawa, Atsuhiro; Soai, Kenso (1986). "Mixed solvents containing methanol as useful reaction media for unique chemoselective reductions within lithium borohydride". The Journal of Organic Chemistry. 51 (21): 4000-4005. doi:10.1021/jo00371a017.
  9. ^ Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. (2009). "A Convenient and General Iron-Catalyzed Reduction of Amides to Amines". Angewandte Chemie International Edition in English. 48 (50): 9507-9510. doi:10.1002/anie.200904677. PMID 19784999.

External links


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Amide_reduction
 



 



 
Music Scenes