Archimedean Solid
Get Archimedean Solid essential facts below. View Videos or join the Archimedean Solid discussion. Add Archimedean Solid to your PopFlock.com topic list for future reference or share this resource on social media.
Archimedean Solid
Truncated tetrahedron, cuboctahedron and truncated icosidodecahedron. The first and the last one can be described as the smallest and the largest Archimedean solid, respectively.

In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed of only one type of polygon) and excluding the prisms and antiprisms. They differ from the Johnson solids, whose regular polygonal faces do not meet in identical vertices.

"Identical vertices" means that each two vertices are symmetric to each other: A global isometry of the entire solid takes one vertex to the other while laying the solid directly on its initial position. Branko Grünbaum (2009) observed that a 14th polyhedron, the elongated square gyrobicupola (or pseudo-rhombicuboctahedron), meets a weaker definition of an Archimedean solid, in which "identical vertices" means merely that the faces surrounding each vertex are of the same types (i.e. each vertex looks the same from close up), so only a local isometry is required. Grünbaum pointed out a frequent error in which authors define Archimedean solids using this local definition but omit the 14th polyhedron. If only 13 polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods.

Prisms and antiprisms, whose symmetry groups are the dihedral groups, are generally not considered to be Archimedean solids, even though their faces are regular polygons and their symmetry groups act transitively on their vertices. Excluding these two infinite families, there are 13 Archimedean solids. All the Archimedean solids (but not the elongated square gyrobicupola) can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry.

Origin of name

The Archimedean solids take their name from Archimedes, who discussed them in a now-lost work. Pappus refers to it, stating that Archimedes listed 13 polyhedra.[1] During the Renaissance, artists and mathematicians valued pure forms with high symmetry, and by around 1620 Johannes Kepler had completed the rediscovery of the 13 polyhedra,[2] as well as defining the prisms, antiprisms, and the non-convex solids known as Kepler-Poinsot polyhedra. (See Schreiber, Fischer & Sternath 2008 for more information about the rediscovery of the Archimedean solids during the renaissance.)

Kepler may have also found the elongated square gyrobicupola (pseudorhombicuboctahedron): at least, he once stated that there were 14 Archimedean solids. However, his published enumeration only includes the 13 uniform polyhedra, and the first clear statement of the pseudorhombicuboctahedron's existence was made in 1905, by Duncan Sommerville.[1]

Classification

There are 13 Archimedean solids (not counting the elongated square gyrobicupola; 15 if the mirror images of two enantiomorphs, the snub cube and snub dodecahedron, are counted separately).

Here the vertex configuration refers to the type of regular polygons that meet at any given vertex. For example, a vertex configuration of (4,6,8) means that a square, hexagon, and octagon meet at a vertex (with the order taken to be clockwise around the vertex).

Name/
(alternative name)
Schläfli
Coxeter
Transparent Solid Net Vertex
conf./fig.
Faces Edges Vert. Volume
(unit edges)
Point
group
Sphericity
truncated tetrahedron t{3,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated tetrahedron   Cog-scripted-svg-blue.svg Polyhedron truncated 4a max.png Polyhedron truncated 4a net.svg 3.6.6
Polyhedron truncated 4a vertfig.png
8 4 triangles
4 hexagons
18 12 Td
cuboctahedron
(rhombitetratetrahedron)
r{4,3} or rr{3,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png or CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Cuboctahedron   Cog-scripted-svg-blue.svg Polyhedron 6-8 max.png Polyhedron 6-8 net.svg 3.4.3.4
Polyhedron 6-8 vertfig.png
14 8 triangles
6 squares
24 12 Oh
truncated cube t{4,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated hexahedron   Cog-scripted-svg-blue.svg Polyhedron truncated 6 max.png Polyhedron truncated 6 net.svg 3.8.8
Polyhedron truncated 6 vertfig.png
14 8 triangles
6 octagons
36 24 Oh
truncated octahedron
(truncated tetratetrahedron)
t{3,4} or tr{3,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png or CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated octahedron   Cog-scripted-svg-blue.svg Polyhedron truncated 8 max.png Polyhedron truncated 8 net.svg 4.6.6
Polyhedron truncated 8 vertfig.png
14 6 squares
8 hexagons
36 24 Oh
rhombicuboctahedron
(small rhombicuboctahedron)
rr{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicuboctahedron   Cog-scripted-svg-blue.svg Polyhedron small rhombi 6-8 max.png Polyhedron small rhombi 6-8 net.svg 3.4.4.4
Polyhedron small rhombi 6-8 vertfig.png
26 8 triangles
18 squares
48 24 Oh
truncated cuboctahedron
(great rhombicuboctahedron)
tr{4,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated cuboctahedron   Cog-scripted-svg-blue.svg Polyhedron great rhombi 6-8 max.png Polyhedron great rhombi 6-8 net.svg 4.6.8
Polyhedron great rhombi 6-8 vertfig light.png
26 12 squares
8 hexagons
6 octagons
72 48 Oh
snub cube
(snub cuboctahedron)
sr{4,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub hexahedron (Ccw)   Cog-scripted-svg-blue.svg Polyhedron snub 6-8 left max.png Polyhedron snub 6-8 left net.svg 3.3.3.3.4
Polyhedron snub 6-8 left vertfig.png
38 32 triangles
6 squares
60 24 O
icosidodecahedron r{5,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron   Cog-scripted-svg-blue.svg Polyhedron 12-20 max.png Polyhedron 12-20 net.svg 3.5.3.5
Polyhedron 12-20 vertfig.png
32 20 triangles
12 pentagons
60 30 Ih
truncated dodecahedron t{5,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated dodecahedron   Cog-scripted-svg-blue.svg Polyhedron truncated 12 max.png Polyhedron truncated 12 net.svg 3.10.10
Polyhedron truncated 12 vertfig.png
32 20 triangles
12 decagons
90 60 Ih
truncated icosahedron t{3,5}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Truncated icosahedron   Cog-scripted-svg-blue.svg Polyhedron truncated 20 max.png Polyhedron truncated 20 net.svg 5.6.6
Polyhedron truncated 20 vertfig.png
32 12 pentagons
20 hexagons
90 60 Ih
rhombicosidodecahedron
(small rhombicosidodecahedron)
rr{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicosidodecahedron   Cog-scripted-svg-blue.svg Polyhedron small rhombi 12-20 max.png Polyhedron small rhombi 12-20 net.svg 3.4.5.4
Polyhedron small rhombi 12-20 vertfig.png
62 20 triangles
30 squares
12 pentagons
120 60 Ih
truncated icosidodecahedron
(great rhombicosidodecahedron)
tr{5,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated icosidodecahedron   Cog-scripted-svg-blue.svg Polyhedron great rhombi 12-20 max.png Polyhedron great rhombi 12-20 net.svg 4.6.10
Polyhedron great rhombi 12-20 vertfig light.png
62 30 squares
20 hexagons
12 decagons
180 120 Ih
snub dodecahedron
(snub icosidodecahedron)
sr{5,3}
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub dodecahedron (Cw)   Cog-scripted-svg-blue.svg Polyhedron snub 12-20 left max.png Polyhedron snub 12-20 left net.svg 3.3.3.3.5
Polyhedron snub 12-20 left vertfig.png
92 80 triangles
12 pentagons
150 60 I

Some definitions of semiregular polyhedron include one more figure, the elongated square gyrobicupola or "pseudo-rhombicuboctahedron".[3]

Properties

The number of vertices is 720° divided by the vertex angle defect.

The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular.

The duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra, these are the face-uniform solids with regular vertices.

Chirality

The snub cube and snub dodecahedron are known as chiral, as they come in a left-handed form (Latin: levomorph or laevomorph) and right-handed form (Latin: dextromorph). When something comes in multiple forms which are each other's three-dimensional mirror image, these forms may be called enantiomorphs. (This nomenclature is also used for the forms of certain chemical compounds.)

Construction of Archimedean solids

The Archimedean solids can be constructed as generator positions in a kaleidoscope.

The different Archimedean and Platonic solids can be related to each other using a handful of general constructions. Starting with a Platonic solid, truncation involves cutting away of corners. To preserve symmetry, the cut is in a plane perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners. Depending on how much is truncated (see table below), different Platonic and Archimedean (and other) solids can be created. If the truncation is exactly deep enough such that each pair of faces from adjacent vertices shares exactly one point, it is known as a rectification. An expansion, or cantellation, involves moving each face away from the center (by the same distance so as to preserve the symmetry of the Platonic solid) and taking the convex hull. Expansion with twisting also involves rotating the faces, thus splitting each rectangle corresponding to an edge into two triangles by one of the diagonals of the rectangle. The last construction we use here is truncation of both corners and edges. Ignoring scaling, expansion can also be viewed the rectification of the rectification. Likewise, the cantitruncation can be viewed as the truncation of the rectification.

Construction of Archimedean Solids
Symmetry Tetrahedral
Tetrahedral reflection domains.png
Octahedral
Octahedral reflection domains.png
Icosahedral
Icosahedral reflection domains.png
Starting solid
Operation
Symbol
{p,q}
CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
Tetrahedron
{3,3}
Uniform polyhedron-33-t0.png
Cube
{4,3}
Uniform polyhedron-43-t0.svg
Octahedron
{3,4}
Uniform polyhedron-43-t2.svg
Dodecahedron
{5,3}
Uniform polyhedron-53-t0.svg
Icosahedron
{3,5}
Uniform polyhedron-53-t2.svg
Truncation (t) t{p,q}
CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png
truncated tetrahedron
Uniform polyhedron-33-t01.png
truncated cube
Uniform polyhedron-43-t01.svg
truncated octahedron
Uniform polyhedron-43-t12.svg
truncated dodecahedron
Uniform polyhedron-53-t01.svg
truncated icosahedron
Uniform polyhedron-53-t12.svg
Rectification (r)
Ambo (a)
r{p,q}
CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png
tetratetrahedron
(octahedron)
Uniform polyhedron-33-t1.png
cuboctahedron
Uniform polyhedron-43-t1.svg
icosidodecahedron
Uniform polyhedron-53-t1.svg
Bitruncation (2t)
Dual kis (dk)
2t{p,q}
CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png
truncated tetrahedron
Uniform polyhedron-33-t12.png
truncated octahedron
Uniform polyhedron-43-t12.png
truncated cube
Uniform polyhedron-43-t01.svg
truncated icosahedron
Uniform polyhedron-53-t12.svg
truncated dodecahedron
Uniform polyhedron-53-t01.svg
Birectification (2r)
Dual (d)
2r{p,q}
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png
tetrahedron
Uniform polyhedron-33-t2.png
octahedron
Uniform polyhedron-43-t2.svg
cube
Uniform polyhedron-43-t0.svg
icosahedron
Uniform polyhedron-53-t2.svg
dodecahedron
Uniform polyhedron-53-t0.svg
cantellation (rr)
Expansion (e)
rr{p,q}
CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png
rhombitetratetrahedron
(cuboctahedron)
Uniform polyhedron-33-t02.png
rhombicuboctahedron
Uniform polyhedron-43-t02.png
rhombicosidodecahedron
Uniform polyhedron-53-t02.png
Snub rectified (sr)
Snub (s)
sr{p,q}
CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
snub tetratetrahedron
(icosahedron)
Uniform polyhedron-33-s012.svg
snub cuboctahedron
Uniform polyhedron-43-s012.png
snub icosidodecahedron
Uniform polyhedron-53-s012.png
Cantitruncation (tr)
Bevel (b)
tr{p,q}
CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png
truncated tetratetrahedron
(truncated octahedron)
Uniform polyhedron-33-t012.png
truncated cuboctahedron
Uniform polyhedron-43-t012.png
truncated icosidodecahedron
Uniform polyhedron-53-t012.png

Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. Also, partially because the tetrahedron is self-dual, only one Archimedean solid that has at most tetrahedral symmetry. (All Platonic solids have at least tetrahedral symmetry, as tetrahedral symmetry is a symmetry operation of (i.e. is included in) octahedral and isohedral symmetries, which is demonstrated by the fact that an octahedron can be viewed as a rectified tetrahedron, and an icosahedron can be used as a snub tetrahedron.)

See also

Citations

  1. ^ a b Grünbaum (2009).
  2. ^ Field J., Rediscovering the Archimedean Polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler, Archive for History of Exact Sciences, 50, 1997, 227
  3. ^ Malkevitch (1988), p. 85

General references

  • Grünbaum, Branko (2009), "An enduring error", Elemente der Mathematik, 64 (3): 89-101, doi:10.4171/EM/120, MR 2520469. Reprinted in Pitici, Mircea, ed. (2011), The Best Writing on Mathematics 2010, Princeton University Press, pp. 18-31.
  • Jayatilake, Udaya (March 2005). "Calculations on face and vertex regular polyhedra". Mathematical Gazette. 89 (514): 76-81..
  • Malkevitch, Joseph (1988), "Milestones in the history of polyhedra", in Senechal, M.; Fleck, G. (eds.), Shaping Space: A Polyhedral Approach, Boston: Birkhäuser, pp. 80-92.
  • Pugh, Anthony (1976). Polyhedra: A visual approach. California: University of California Press Berkeley. ISBN 0-520-03056-7. Chapter 2
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
  • Schreiber, Peter; Fischer, Gisela; Sternath, Maria Luise (2008). "New light on the rediscovery of the Archimedean solids during the renaissance". Archive for History of Exact Sciences. 62 (4): 457-467. doi:10.1007/s00407-008-0024-z. ISSN 0003-9519..

External links


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Archimedean_solid
 



 



 
Music Scenes