Arithmetic Progression

Get Arithmetic Progression essential facts below. View Videos or join the Arithmetic Progression discussion. Add Arithmetic Progression to your PopFlock.com topic list for future reference or share this resource on social media.
## Sum

### Derivation

## Product

### Derivation

### Examples

## Standard deviation

## Intersections

## Summary of formulae

## See also

## References

## External links

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Arithmetic Progression

In mathematics, an **arithmetic progression ** (AP) or **arithmetic sequence** is a sequence of numbers such that the difference between the consecutive terms is constant. Difference here means the second minus the first.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with *common difference* of 2.

If the initial term of an arithmetic progression is and the common difference of successive members is *d*, then the *n*th term of the sequence () is given by:

- ,

and in general

- .

A finite portion of an arithmetic progression is called a **finite arithmetic progression** and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an **arithmetic series**.

The behavior of the arithmetic progression depends on the common difference *d*. If the common difference is:

- positive, then the members (terms) will grow towards positive infinity;
- negative, then the members (terms) will grow towards negative infinity.

2 | + | 5 | + | 8 | + | 11 | + | 14 | = | 40 |

14 | + | 11 | + | 8 | + | 5 | + | 2 | = | 40 |

16 | + | 16 | + | 16 | + | 16 | + | 16 | = | 80 |

The sum of the members of a finite arithmetic progression is called an **arithmetic series**. For example, consider the sum:

This sum can be found quickly by taking the number *n* of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:

In the case above, this gives the equation:

This formula works for any real numbers and . For example:

To derive the above formula, begin by expressing the arithmetic series in two different ways:

Adding both sides of the two equations, all terms involving *d* cancel:

Dividing both sides by 2 produces a common form of the equation:

An alternate form results from re-inserting the substitution: :

Furthermore, the mean value of the series can be calculated via: :

The formula is very similar to the mean of a discrete uniform distribution.

In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the *Aryabhatiya* (section 2.19).

According to an anecdote, young Carl Friedrich Gauss reinvented this method to compute the sum 1+2+3+...+99+100 for a punishment in primary school.

The product of the members of a finite arithmetic progression with an initial element *a*_{1}, common differences *d*, and *n* elements in total is determined in a closed expression

where denotes the Gamma function. The formula is not valid when is negative or zero.

This is a generalization from the fact that the product of the progression is given by the factorial and that the product

for positive integers and is given by

where denotes the rising factorial.

By the recurrence formula , valid for a complex number ,

- ,

- ,

so that

for a positive integer and a positive complex number.

Thus, if ,

- ,

and, finally,

**example 1**
Taking the example , the product of the terms of the arithmetic progression given by up to the 50th term is

**example 2**
The product of the first 10 odd numbers is given by

The standard deviation of any arithmetic progression can be calculated as

where is the number of terms in the progression and is the common difference between terms. The formula is very similar to the standard deviation of a discrete uniform distribution.

The intersection of any two doubly infinite arithmetic progressions is either empty or another arithmetic progression, which can be found using the Chinese remainder theorem. If each pair of progressions in a family of doubly infinite arithmetic progressions have a non-empty intersection, then there exists a number common to all of them; that is, infinite arithmetic progressions form a Helly family.^{[1]} However, the intersection of infinitely many infinite arithmetic progressions might be a single number rather than itself being an infinite progression.

If

- is the first term of an arithmetic progression.
- is the nth term of an arithmetic progression.
- is the difference between terms of the arithmetic progression.
- is the number of terms in the arithmetic progression.
- is the sum of n terms in the arithmetic progression.
- is the mean value of arithmetic series.

then

- 1.

- 2.

- 3.

- 4.

- 5.

- 6. .

- Primes in arithmetic progression
- Linear difference equation
- Arithmetico-geometric sequence
- Generalized arithmetic progression, a set of integers constructed as an arithmetic progression is, but allowing several possible differences
- Harmonic progression
- Heronian triangles with sides in arithmetic progression
- Problems involving arithmetic progressions
- Utonality

**^**Duchet, Pierre (1995), "Hypergraphs", in Graham, R. L.; Grötschel, M.; Lovász, L. (eds.),*Handbook of combinatorics, Vol. 1, 2*, Amsterdam: Elsevier, pp. 381-432, MR 1373663. See in particular Section 2.5, "Helly Property", pp. 393-394.

- Sigler, Laurence E. (trans.) (2002).
*Fibonacci's Liber Abaci*. Springer-Verlag. pp. 259-260. ISBN 0-387-95419-8.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists