Get Biome essential facts below. View Videos or join the Biome discussion. Add Biome to your PopFlock.com topic list for future reference or share this resource on social media.
Biome
Plants and animals associated with an environment
One way of mapping terrestrial biomes around the world
A biome is a collection of plants and animals that have common characteristics for the environment they exist in. They can be found over a range of continents. Biomes are distinct biological communities that have formed in response to a shared physical climate.[1][2]Biome is a broader term than habitat; any biome can comprise a variety of habitats.
While a biome can cover large areas, a microbiome is a mix of organisms that coexist in a defined space on a much smaller scale. For example, the human microbiome is the collection of bacteria, viruses, and other microorganisms that are present on or in a human body.[3]
A 'biota' is the total collection of organisms of a geographic region or a time period, from local geographic scales and instantaneous temporal scales all the way up to whole-planet and whole-timescale spatiotemporal scales. The biotas of the Earth make up the biosphere.
History of the concept
The term was suggested in 1916 by Clements, originally as a synonym for biotic community of Möbius (1877).[4] Later, it gained its current definition, based on earlier concepts of phytophysiognomy, formation and vegetation (used in opposition to flora), with the inclusion of the animal element and the exclusion of the taxonomic element of species composition.[5][6] In 1935, Tansley added the climatic and soil aspects to the idea, calling it ecosystem.[7][8] The International Biological Program (1964-74) projects popularized the concept of biome.[9]
However, in some contexts, the term biome is used in a different manner. In German literature, particularly in the Walter terminology, the term is used similarly as biotope (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology--irrespectively of the continent in which an area is present, it takes the same biome name--and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil).[10]
In Brazilian literature, the term "biome" is sometimes used as synonym of "biogeographic province", an area based on species composition (the term "floristic province" being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of Ab'Sáber, a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.[5][11][12]
Classifications
To divide the world into a few ecological zones is difficult, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them.[13]
A 1978 study on North American grasslands[14] found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m2/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit.[15] These findings help explain the categories used in Holdridge's bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.
Holdridge (1947, 1964) life zones
Holdridge life zone classification scheme. Although conceived as three-dimensional by its originator, it is usually shown as a two-dimensional array of hexagons in a triangular frame.
Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.
The distribution of vegetation types as a function of mean annual temperature and precipitation.
Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.
Whittaker based his approach on theoretical assertions and empirical sampling. He had previously compiled a review of biome classifications.[18]
Key definitions for understanding Whittaker's scheme
Physiognomy: the apparent characteristics, outward features, or appearance of ecological communities or species.
Biome: a grouping of terrestrial ecosystems on a given continent that is similar in vegetation structure, physiognomy, features of the environment and characteristics of their animal communities.
Formation: a major kind of community of plants on a given continent.
Biome-type: grouping of convergent biomes or formations of different continents, defined by physiognomy.
Formation-type: a grouping of convergent formations.
Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is a broader method to categorize similar communities.[19]
Whittaker's parameters for classifying biome-types
Whittaker used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.[19]
Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
Climatic moisture gradient
Temperature gradient by altitude
Temperature gradient by latitude
Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:
The gradient runs from favorable to the extreme, with corresponding changes in productivity.
Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
Trends in the diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
The same growth forms may be dominant in similar environments in widely different parts of the world.
Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.
The multiauthored series Ecosystems of the world, edited by David W. Goodall, provides a comprehensive coverage of the major "ecosystem types or biomes" on earth:[21]
Terrestrial Ecosystems
Natural Terrestrial Ecosystems
Wet Coastal Ecosystems
Dry Coastal Ecosystems
Polar and Alpine Tundra
Mires: Swamp, Bog, Fen, and Moor
Temperate Deserts and Semi-Deserts
Coniferous Forests
Temperate Deciduous Forests
Natural Grasslands
Heathlands and Related Shrublands
Temperate Broad-Leaved Evergreen Forests
Mediterranean-Type Shrublands
Hot Deserts and Arid Shrublands
Tropical Savannas
Tropical Rain Forest Ecosystems
Wetland Forests
Ecosystems of Disturbed Ground
Managed Terrestrial Ecosystems
Managed Grasslands
Field Crop Ecosystems
Tree Crop Ecosystems
Greenhouse Ecosystems
Bioindustrial Ecosystems
Aquatic Ecosystems
Inland Aquatic Ecosystems
River and Stream Ecosystems
Lakes and Reservoirs
Marine Ecosystems
Intertidal and Littoral Ecosystems
Coral Reefs
Estuaries and Enclosed Seas
Ecosystems of the Continental Shelves
Ecosystems of the Deep Ocean
Managed Aquatic Ecosystems
Managed Aquatic Ecosystems
Underground Ecosystems
Cave Ecosystems
Walter (1976, 2002) zonobiomes
The eponymously-named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.[10][22][23]
Zonobiome
Zonal soil type
Zonal vegetation type
ZB I. Equatorial, always moist, little temperature seasonality
ZB IX. Polar, short, cool summers and long, cold winters
Tundra humus soils with solifluction (permafrost soils)
Low, evergreen vegetation, without trees, growing over permanently frozen soils
Schultz (1988) ecozones
Schultz (1988) defined nine ecozones (note that his concept of ecozone is more similar to the concept of biome used in this article than to the concept of ecozone of BBC):[24]
polar/subpolar zone
boreal zone
humid mid-latitudes
arid mid-latitudes
tropical/subtropical arid lands
Mediterranean-type subtropics
seasonal tropics
humid subtropics
humid tropics
Bailey (1989) ecoregions
Robert G. Bailey nearly developed a biogeographical classification system of ecoregions for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into seven domains (polar, humid temperate, dry, humid, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).[25][26]
M310 Tropical/Subtropical Steppe Division - Mountain Provinces
320 Tropical/Subtropical Desert Division
330 Temperate Steppe Division
340 Temperate Desert Division
400 Humid Tropical Domain
410 Savanna Division
420 Rainforest Division
Olson & Dinerstein (1998) biomes for WWF / Global 200
Terrestrial biomes of the world according to Olson et al. and used by the WWF and Global 200.
A team of biologists convened by the World Wildlife Fund (WWF) developed a scheme that divided the world's land area into biogeographic realms (called "ecozones" in a BBC scheme), and these into ecoregions (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type).[27][28]
This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation.[27]
Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crop and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a way to recognize the irreversible coupling of human and ecological systems at global scales and manage Earth's biosphere and anthropogenic biomes.
The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.[36]
See also
Ecosystem – Community of living organisms together with the nonliving components of their environment
Ecotope – The smallest ecologically distinct landscape features in a landscape mapping and classification system
^Clements, F. E. 1917. The development and structure of biotic communities. J. Ecology 5:120-121. Abstract of a talk in 1916, [1]Archived 2016-10-07 at the Wayback Machine.
^ abCoutinho, L. M. (2006). O conceito de bioma. Acta Bot. Bras. 20(1): 13-23, [2]Archived 2016-10-07 at the Wayback Machine.
^Martins, F. R. & Batalha, M. A. (2011). Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili, J. M., Eisenlohr, P. V.; Fiuza de Melo, M. M. R.; Andrade, L. A.; Meira Neto, J. A. A. (Org.). Fitossociologia no Brasil: métodos e estudos de caso. Vol. 1. Viçosa: Editora UFV. pp. 44-85. [3]Archived 2016-09-24 at the Wayback Machine. Earlier version, 2003, [4]Archived 2016-08-27 at the Wayback Machine.
^Cox, C. B., Moore, P.D. & Ladle, R. J. 2016. Biogeography: an ecological and evolutionary approach. 9th edition. John Wiley & Sons: Hoboken, p. 20, [5]Archived 2016-11-26 at the Wayback Machine.
^Tansley, A.G. (1935). The use and abuse of vegetational terms and concepts. Ecology 16 (3): 284-307, "Archived copy"(PDF). Archived from the original(PDF) on 2016-10-06. Retrieved .CS1 maint: archived copy as title (link).
^Box, E.O. & Fujiwara, K. (2005). Vegetation types and their broad-scale distribution. In: van der Maarel, E. (ed.). Vegetation ecology. Blackwell Scientific, Oxford. pp. 106-128, [6]Archived 2016-08-28 at the Wayback Machine.
^ abWalter, H. & Breckle, S-W. (2002). Walter's Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere. New York: Springer-Verlag, p. 86, [7]Archived 2016-11-27 at the Wayback Machine.
^Batalha, M.A. (2011). The Brazilian cerrado is not a biome. Biota Neotrop. 11:21-24, [8]Archived 2016-10-07 at the Wayback Machine.
^Schultz, Jürgen (1995). The ecozones of the world. pp. 2-3. ISBN3540582932.
^Sims, Phillip L.; Singh, J.S. (July 1978). "The Structure and Function of Ten Western North American Grasslands: III. Net Primary Production, Turnover and Efficiencies of Energy Capture and Water Use". Journal of Ecology. British Ecological Society. 66 (2): 573-597. doi:10.2307/2259152. JSTOR2259152.
^Pomeroy, Lawrence R. and James J. Alberts, editors. Concepts of Ecosystem Ecology. New York: Springer-Verlag, 1988.
^Allee, W.C. (1949). Principles of animal ecology. Philadelphia, Saunders Co., [9]Archived 2017-10-01 at the Wayback Machine.
^Whittaker, Robert H., Botanical Review, Classification of Natural Communities, Vol. 28, No. 1 (Jan-Mar 1962), pp. 1-239.
^ abWhittaker, Robert H. Communities and Ecosystems. New York: MacMillan Publishing Company, Inc., 1975.
^Whittaker, R. H. (1970). Communities and Ecosystems. Toronto, pp. 51-64, [10].
^Goodall, D. W. (editor-in-chief). Ecosystems of the World. Elsevier, Amsterdam. 36 vol., 1974-, [11]Archived 2016-09-18 at the Wayback Machine.
^Walter, H. 1976. Die ökologischen Systeme der Kontinente (Biogeosphäre). Prinzipien ihrer Gliederung mit Beispielen. Stuttgart.
^Walter, H. & Breckle, S-W. (1991). Ökologie der Erde, Band 1, Grundlagen. Stuttgart.
^Schultz, J. Die Ökozonen der Erde, 1st ed., Ulmer, Stuttgart, Germany, 1988, 488 pp.; 2nd ed., 1995, 535 pp.; 3rd ed., 2002. Transl.: The Ecozones of the World: The Ecological Divisions of the Geosphere. Berlin: Springer-Verlag, 1995; 2nd ed., 2005, [12].
^Bailey, R. G. 1989. Explanatory supplement to ecoregions map of the continents. Environmental Conservation 16: 307-309. [With map of land-masses of the world, "Ecoregions of the Continents - Scale 1 : 30,000,000", published as a supplement.]
^ abOlson, D. M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biol. 12:502-515, [13]Archived 2016-10-07 at the Wayback Machine.
^ abcOlson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938, [14]Archived 2012-09-17 at the Wayback Machine.
^Abell, R., M. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras-Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. d. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403-414, [15]Archived 2016-10-06 at the Wayback Machine.
^Spalding, M. D. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573-583, [16]Archived 2016-10-06 at the Wayback Machine.
^"Freshwater Ecoregions of the World: Major Habitat Types" "Archived copy". Archived from the original on 2008-10-07. Retrieved .CS1 maint: archived copy as title (link). Accessed May 12, 2008.
^Pruvot, G. Conditions générales de la vie dans les mers et principes de distribution des organismes marins: Année Biologique, vol. 2, pp. 559--587, 1896, [17]Archived 2016-10-18 at the Wayback Machine.
^Longhurst, A. 1998. Ecological Geography of the Sea. San Diego: Academic Press, [18].
WorldBiomes.com is a site covering the 5 principal world biome types: aquatic, desert, forest, grasslands, and tundra.
UWSP's online textbook The Physical Environment: - Earth Biomes
Panda.org's Habitats - describes the 14 major terrestrial habitats, 7 major freshwater habitats, and 5 major marine habitats.
Panda.org's Habitats Simplified - provides simplified explanations for 10 major terrestrial and aquatic habitat types.
UCMP Berkeley's The World's Biomes - provides lists of characteristics for some biomes and measurements of climate statistics.
Gale/Cengage has an excellent Biome Overview of terrestrial, aquatic, and man-made biomes with a particular focus on trees native to each, and has detailed descriptions of desert, rain forest, and wetland biomes.
NASA's Earth Observatory Mission: Biomes gives an exemplar of each biome that is described in detail and provides scientific measurements of the climate statistics that define each biome.