 In mathematics, the Cauchy-Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, but remained relatively unknown until Hadamard rediscovered it. Hadamard's first publication of this result was in 1888; he also included it as part of his 1892 Ph.D. thesis.

## Theorem for one complex variable

Consider the formal power series in one complex variable z of the form

$f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}$ where $a,c_{n}\in \mathbb {C} .$ Then the radius of convergence $R$ of ƒ at the point a is given by

${\frac {1}{R}}=\limsup _{n\to \infty }{\big (}|c_{n}|^{1/n}{\big )}$ where lim sup denotes the limit superior, the limit as n approaches infinity of the supremum of the sequence values after the nth position. If the sequence values are unbounded so that the lim sup is ?, then the power series does not converge near a, while if the lim sup is 0 then the radius of convergence is ?, meaning that the series converges on the entire plane.

### Proof

Without loss of generality assume that $a=0$ . We will show first that the power series $\sum c_{n}z^{n}$ converges for $|z| , and then that it diverges for $|z|>R$ .

First suppose $|z| . Let $t=1/R$ not be $0$ or $\pm \infty .$ For any $\varepsilon >0$ , there exists only a finite number of $n$ such that ${\sqrt[{n}]{|c_{n}|}}\geq t+\varepsilon$ . Now $|c_{n}|\leq (t+\varepsilon )^{n}$ for all but a finite number of $c_{n}$ , so the series $\sum c_{n}z^{n}$ converges if $|z|<1/(t+\varepsilon )$ . This proves the first part.

Conversely, for $\varepsilon >0$ , $|c_{n}|\geq (t-\varepsilon )^{n}$ for infinitely many $c_{n}$ , so if $|z|=1/(t-\varepsilon )>R$ , we see that the series cannot converge because its nth term does not tend to 0.

## Theorem for several complex variables

Let $\alpha$ be a multi-index (a n-tuple of integers) with $|\alpha |=\alpha _{1}+\cdots +\alpha _{n}$ , then $f(x)$ converges with radius of convergence $\rho$ (which is also a multi-index) if and only if

$\lim _{|\alpha |\to \infty }{\sqrt[{|\alpha |}]{|c_{\alpha }|\rho ^{\alpha }}}=1$ to the multidimensional power series

$\sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }:=\sum _{\alpha _{1}\geq 0,\ldots ,\alpha _{n}\geq 0}c_{\alpha _{1},\ldots ,\alpha _{n}}(z_{1}-a_{1})^{\alpha _{1}}\cdots (z_{n}-a_{n})^{\alpha _{n}}$ The proof can be found in