Chart (topology)

Get Chart Topology essential facts below. View Videos or join the Chart Topology discussion. Add Chart Topology to your PopFlock.com topic list for future reference or share this resource on social media.
## Charts

## Formal definition of atlas

## Transition maps

## More structure

## See also

## References

## External links

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Chart Topology

In mathematics, particularly topology, one describes a manifold using an **atlas**. An atlas consists of individual *charts* that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an atlas has its more common meaning. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fibre bundles.

The definition of an atlas depends on the notion of a *chart*. A **chart** for a topological space *M* (also called a **coordinate chart**, **coordinate patch**, **coordinate map**, or **local frame**) is a homeomorphism from an open subset *U* of *M* to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair .

An **atlas** for a topological space *M* is a collection indexed by a set *A*, of charts on *M* such that
. If the codomain of each chart is the *n*-dimensional Euclidean space, then *M* is said to be an *n*-dimensional manifold.

The plural of atlas is *atlases*, although some authors use *atlantes*.^{[1]}^{[2]}

An atlas on an -dimensional manifold is called an **adequate atlas** if the image of each chart is either or , is a locally finite open cover of , and , where is the open ball of radius 1 centered at the origin and is the closed half space. Every second countable manifold admits an adequate atlas.^{[3]} Moreover, if is an open covering of the second countable manifold then there is an adequate atlas on such that is a refinement of .^{[3]}

A transition map provides a way of comparing two charts of an atlas. To make this comparison, we consider the composition of one chart with the inverse of the other. This composition is not well-defined unless we restrict both charts to the intersection of their domains of definition. (For example, if we have a chart of Europe and a chart of Russia, then we can compare these two charts on their overlap, namely the European part of Russia.)

To be more precise, suppose that and are two charts for a manifold *M* such that is non-empty.
The **transition map** is the map defined by

Note that since and are both homeomorphisms, the transition map is also a homeomorphism.

One often desires more structure on a manifold than simply the topological structure. For example, if one would like an unambiguous notion of differentiation of functions on a manifold, then it is necessary to construct an atlas whose transition functions are differentiable. Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives.

If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth. Alternatively, one could require that the transition maps have only *k* continuous derivatives in which case the atlas is said to be .

Very generally, if each transition function belongs to a pseudogroup of homeomorphisms of Euclidean space, then the atlas is called a -atlas. If the transition maps between charts of an atlas preserve a local trivialization, then the atlas defines the structure of a fibre bundle.

**^**Jost, Jürgen (11 November 2013). "Riemannian Geometry and Geometric Analysis". Springer Science & Business Media. Retrieved 2018 – via Google Books.**^**Giaquinta, Mariano; Hildebrandt, Stefan (9 March 2013). "Calculus of Variations II". Springer Science & Business Media. Retrieved 2018 – via Google Books.- ^
^{a}^{b}Kosinski, Antoni (2007).*Differential manifolds*. Mineola, N.Y: Dover Publications. ISBN 978-0-486-46244-8. OCLC 853621933.

- Lee, John M. (2006).
*Introduction to Smooth Manifolds*. Springer-Verlag. ISBN 978-0-387-95448-6. - Sepanski, Mark R. (2007).
*Compact Lie Groups*. Springer-Verlag. ISBN 978-0-387-30263-8. - Husemoller, D (1994),
*Fibre bundles*, Springer, Chapter 5 "Local coordinate description of fibre bundles".

- Atlas by Rowland, Todd

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists