Copper Indium Selenide
Get Copper Indium Selenide essential facts below. View Videos or join the Copper Indium Selenide discussion. Add Copper Indium Selenide to your topic list for future reference or share this resource on social media.
Copper Indium Selenide
Copper indium gallium selenide
CIGS unit cell. Red = Cu, yellow = Se, blue = In/Ga
Density ~5.7 g/cm3
Melting point 1,070 to 990 °C (1,960 to 1,810 °F; 1,340 to 1,260 K) (x=0-1)[1]
Band gap 1.0-1.7 eV (x=0-1)[1]
tetragonal, Pearson symbol tI16 [1]
a = 0.56-0.58 nm (x=0-1), c = 1.10-1.15 nm (x=0-1)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Copper indium gallium (di)selenide (CIGS) is a I-III-VI2semiconductor material composed of copper, indium, gallium, and selenium. The material is a solid solution of copper indium selenide (often abbreviated "CIS") and copper gallium selenide. It has a chemical formula of CuIn(1-x)Ga(x)Se2 where the value of x can vary from 0 (pure copper indium selenide) to 1 (pure copper gallium selenide). CIGS is a tetrahedrally bonded semiconductor, with the chalcopyrite crystal structure, and a bandgap varying continuously with x from about 1.0 eV (for copper indium selenide) to about 1.7 eV (for copper gallium selenide).


CIGS is a tetrahedrally bonded semiconductor, with the chalcopyrite crystal structure. Upon heating it transforms to the zincblende form and the transition temperature decreases from 1045 °C for x=0 to 805 °C for x=1.[1]


It is best known as the material for CIGS solar cells a thin-film technology used in the photovoltaic industry.[2] In this role, CIGS has the advantage of being able to be deposited on flexible substrate materials, producing highly flexible, lightweight solar panels. Improvements in efficiency have made CIGS an established technology among alternative cell materials.

See also


  1. ^ a b c d Tinoco, T.; Rincón, C.; Quintero, M.; Pérez, G. Sánchez (1991). "Phase Diagram and Optical Energy Gaps for CuInyGa1-ySe2 Alloys". Physica Status Solidi A. 124 (2): 427. doi:10.1002/pssa.2211240206.
  2. ^ "DOE Solar Energy Technologies Program Peer Review" (PDF). U.S. department of energy 2009. Retrieved 2011.

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes