Final Stellation of the Icosahedron
Get Final Stellation of the Icosahedron essential facts below. View Videos or join the Final Stellation of the Icosahedron discussion. Add Final Stellation of the Icosahedron to your topic list for future reference or share this resource on social media.
Final Stellation of the Icosahedron
Final stellation of the icosahedron
Complete icosahedron ortho stella.pngComplete icosahedron ortho2 stella.png
Two symmetric orthographic projections
Symmetry group icosahedral (Ih)
Type Stellated icosahedron, 8th of 59
Symbols Du Val H
Wenninger: W42
(As a star polyhedron)
F = 20, E = 90
V = 60 (? = −10)
(As a simple polyhedron)
F = 180, E = 270,
V = 92 (? = 2)
(As a star polyhedron)
Vertex-transitive, face-transitive

In geometry, the complete or final stellation of the icosahedron[1][2] is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron, or inside of it.

This polyhedron is the seventeenth stellation of the icosahedron, and given as Wenninger model index 42.

As a geometrical figure, it has two interpretations, described below:

Johannes Kepler researched stellations that create regular star polyhedra (the Kepler-Poinsot polyhedra) in 1619, but the complete icosahedron, with irregular faces, was first studied in 1900 by Max Brückner.


Kepler-Poinsot solids.svg

Model of the final stellation of the icosahedron.JPG
Brückner's model
(Taf. XI, Fig. 14, 1900)[3]
Echidna, Exmouth.jpg
The echidna


Stellation diagram of the icosahedron with numbered cells. The complete icosahedron is formed from all the cells in the stellation, but only the outermost regions, labelled "13" in the diagram, are visible.
3D model of the final stellation of the icosahedron

As a stellation

The stellation of a polyhedron extends the faces of a polyhedron into infinite planes and generates a new polyhedron that is bounded by these planes as faces and the intersections of these planes as edges. The Fifty Nine Icosahedra enumerates the stellations of the regular icosahedron, according to a set of rules put forward by J. C. P. Miller, including the complete stellation. The Du Val symbol of the complete stellation is H, because it includes all cells in the stellation diagram up to and including the outermost "h" layer.[6]

As a simple polyhedron

Complete icosahedron net stella.png
A polyhedral model can be constructed by 12 sets of faces, each folded into a group of five pyramids.

As a simple, visible surface polyhedron, the outward form of the final stellation is composed of 180 triangular faces, which are the outermost triangular regions in the stellation diagram. These join along 270 edges, which in turn meet at 92 vertices, with an Euler characteristic of 2.[9]

The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The radii of these spheres are in the ratio[10]

Convex hulls of each sphere of vertices
Inner Middle Outer All three
20 vertices 12 vertices 60 vertices 92 vertices
Complete icosahedron convex hull.png
truncated icosahedron
Complete icosahedron ortho stella.png
Complete icosahedron

When regarded as a three-dimensional solid object with edge lengths a, ?a, ?2a and ?2a (where ? is the golden ratio) the complete icosahedron has surface area[10]

and volume[10]

As a star polyhedron

Echidnahedron with enneagram face.png
Twenty 9 polygon faces (one face is drawn yellow with 9 vertices labeled.)
Enneagram 9-4 icosahedral.svg
2-isogonal 9 faces

The complete stellation can also be seen as a self-intersecting star polyhedron having 20 faces corresponding to the 20 faces of the underlying icosahedron. Each face is an irregular 9/4 star polygon, or enneagram.[6] Since three faces meet at each vertex it has 20 × 9 / 3 = 60 vertices (these are the outermost layer of visible vertices and form the tips of the "spines") and 20 × 9 / 2 = 90 edges (each edge of the star polyhedron includes and connects two of the 180 visible edges).

When regarded as a star icosahedron, the complete stellation is a noble polyhedron, because it is both isohedral (face-transitive) and isogonal (vertex-transitive).

See also


  1. ^ Coxeter et al. (1938), pp 30-31
  2. ^ Wenninger, Polyhedron Models, p. 65.
  3. ^ a b Brückner, Max (1900)
  4. ^ Weisstein, Eric W. "Kepler-Poinsot Solid". MathWorld.
  5. ^ Louis Poinsot, Memoire sur les polygones et polyèdres. J. de l'École Polytechnique 9, pp. 16-48, 1810.
  6. ^ a b c Cromwell (1999) (p. 259)
  7. ^ Wheeler (1924)
  8. ^ The name echidnahedron may be credited to Andrew Hume, developer of the netlib polyhedron database:
    "... and some odd solids including the echidnahedron (my name; its actually the final stellation of the icosahedron)." geometry.research; "polyhedra database"; August 30, 1995, 12:00 am.
  9. ^ Echidnahedron Archived 2008-10-07 at the Wayback Machine at
  10. ^ a b c Weisstein, Eric W. "Echidnahedron". MathWorld.


External links

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes