 Frobenius Covariant
Get Frobenius Covariant essential facts below. View Videos or join the Frobenius Covariant discussion. Add Frobenius Covariant to your PopFlock.com topic list for future reference or share this resource on social media.
Frobenius Covariant

In matrix theory, the Frobenius covariants of a square matrix A are special polynomials of it, namely projection matrices Ai associated with the eigenvalues and eigenvectors of A.:pp.403,437-8 They are named after the mathematician Ferdinand Frobenius.

Each covariant is a projection on the eigenspace associated with the eigenvalue ?i. Frobenius covariants are the coefficients of Sylvester's formula, which expresses a function of a matrix f(A) as a matrix polynomial, namely a linear combination of that function's values on the eigenvalues of A.

## Formal definition

Let A be a diagonalizable matrix with eigenvalues ?1, …, ?k.

The Frobenius covariant Ai, for i = 1,…, k, is the matrix

$A_{i}\equiv \prod _{j=1 \atop j\neq i}^{k}{\frac {1}{\lambda _{i}-\lambda _{j}}}(A-\lambda _{j}I)~.$ It is essentially the Lagrange polynomial with matrix argument. If the eigenvalue ?i is simple, then as an idempotent projection matrix to a one-dimensional subspace, Ai has a unit trace.

## Computing the covariants

The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS-1, where S is non-singular and D is diagonal with Di,i = ?i. If A has no multiple eigenvalues, then let ci be the ith right eigenvector of A, that is, the ith column of S; and let ri be the ith left eigenvector of A, namely the ith row of S-1. Then Ai = ciri.

If A has an eigenvalue ?i appear multiple times, then Ai = ?jcjrj, where the sum is over all rows and columns associated with the eigenvalue ?i.:p.521

## Example

Consider the two-by-two matrix:

$A={\begin{bmatrix}1&3\\4&2\end{bmatrix}}.$ This matrix has two eigenvalues, 5 and -2; hence (A-5)(A+2)=0.

The corresponding eigen decomposition is

$A={\begin{bmatrix}3&1/7\\4&-1/7\end{bmatrix}}{\begin{bmatrix}5&0\\0&-2\end{bmatrix}}{\begin{bmatrix}3&1/7\\4&-1/7\end{bmatrix}}^{-1}={\begin{bmatrix}3&1/7\\4&-1/7\end{bmatrix}}{\begin{bmatrix}5&0\\0&-2\end{bmatrix}}{\begin{bmatrix}1/7&1/7\\4&-3\end{bmatrix}}.$ Hence the Frobenius covariants, manifestly projections, are

${\begin{array}{rl}A_{1}&=c_{1}r_{1}={\begin{bmatrix}3\\4\end{bmatrix}}{\begin{bmatrix}1/7&1/7\end{bmatrix}}={\begin{bmatrix}3/7&3/7\\4/7&4/7\end{bmatrix}}=A_{1}^{2}\\A_{2}&=c_{2}r_{2}={\begin{bmatrix}1/7\\-1/7\end{bmatrix}}{\begin{bmatrix}4&-3\end{bmatrix}}={\begin{bmatrix}4/7&-3/7\\-4/7&3/7\end{bmatrix}}=A_{2}^{2}~,\end{array}}$ with

$A_{1}A_{2}=0,\qquad A_{1}+A_{2}=I~.$ Note trA1=trA2=1, as required.