Parallelogram Law

Get Parallelogram Law essential facts below. View Videos or join the Parallelogram Law discussion. Add Parallelogram Law to your PopFlock.com topic list for future reference or share this resource on social media.
## Proof

## The parallelogram law in inner product spaces

## Normed vector spaces satisfying the parallelogram law

## See also

## References

## External links

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Parallelogram Law

In mathematics, the simplest form of the **parallelogram law** (also called the **parallelogram identity**) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: *AB*, *BC*, *CD*, *DA*. But since in Euclidean geometry a parallelogram necessarily has opposite sides equal, i.e. *AB* = *CD* and *BC* = *DA*, the law can be stated as

If the parallelogram is a rectangle, the two diagonals are of equal lengths *AC* = *BD*, so

and the statement reduces to the Pythagorean theorem. For the general quadrilateral with four sides not necessarily equal,

where *x* is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that *x* = 0 for a parallelogram, and so the general formula simplifies to the parallelogram law.

In the parallelogram on the right, let AD=BC=a, AB=DC=b, ?BAD = ?. By using the law of cosines in triangle ?BAD, we get:

In a parallelogram, adjacent angles are supplementary, therefore ?ADC = 180°-?. By using the law of cosines in triangle ?ADC, we get:

By applying the trigonometric identity to the former result, we get:

Now the sum of squares can be expressed as:

After simplifying this expression, we get:

In a normed space, the statement of the parallelogram law is an equation relating norms:

- for all

The parallelogram law is equivalent to the seemingly weaker statement:

- for all

because the reverse inequality can be obtained from it by substituting for x, and for y, and then simplifying. With the same proof, the parallelogram law is also equivalent to:

- for all

In an inner product space, the norm is determined using the inner product:

As a consequence of this definition, in an inner product space the parallelogram law is an algebraic identity, readily established using the properties of the inner product:

Adding these two expressions:

as required.

If *x* is orthogonal to *y*, then and the above equation for the norm of a sum becomes:

which is Pythagoras' theorem.

Most real and complex normed vector spaces do not have inner products, but all normed vector spaces have norms (by definition). For example, a commonly used norm is the *p*-norm:

where the are the components of vector .

Given a norm, one can evaluate both sides of the parallelogram law above. A remarkable fact is that if the parallelogram law holds, then the norm must arise in the usual way from some inner product. In particular, it holds for the *p*-norm if and only if *p* = 2, the so-called *Euclidean* norm or *standard* norm.^{[1]}^{[2]}

For any norm satisfying the parallelogram law (which necessarily is an inner product norm), the inner product generating the norm is unique as a consequence of the polarization identity. In the real case, the polarization identity is given by:

or equivalently by

- or

In the complex case it is given by:

For example, using the *p*-norm with *p* = 2 and real vectors and , the evaluation of the inner product proceeds as follows:

which is the standard dot product of two vectors.

**^**Cantrell, Cyrus D. (2000).*Modern mathematical methods for physicists and engineers*. Cambridge University Press. p. 535. ISBN 0-521-59827-3.if

*p*? 2, there is no inner product such that because the*p*-norm violates the parallelogram law.**^**Saxe, Karen (2002).*Beginning functional analysis*. Springer. p. 10. ISBN 0-387-95224-1.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists