 Standard Gravitational Parameter
Get Standard Gravitational Parameter essential facts below. View Videos or join the Standard Gravitational Parameter discussion. Add Standard Gravitational Parameter to your PopFlock.com topic list for future reference or share this resource on social media.
Standard Gravitational Parameter
 Body ? [m3 s-2] Sun ×1020 Mercury ×1013 Venus ×1014 Earth ×1014 Moon ×1012 Mars ×1013 Ceres ×1010 Jupiter ×1017 Saturn ×1016 Uranus ×1015 Neptune ×1015 Pluto ×1011 Eris ×1012

In celestial mechanics, the standard gravitational parameter ? of a celestial body is the product of the gravitational constant G and the mass M of the body.

$\mu =GM\$ For several objects in the Solar System, the value of ? is known to greater accuracy than either G or M. The SI units of the standard gravitational parameter are . However, units of are frequently used in the scientific literature and in spacecraft navigation.

## Definition

### Small body orbiting a central body The relation between properties of mass and their associated physical constants. Every massive object is believed to exhibit all five properties. However, due to extremely large or extremely small constants, it is generally impossible to verify more than two or three properties for any object.
• The Schwarzschild radius (rs) represents the ability of mass to cause curvature in space and time.
• The standard gravitational parameter (μ) represents the ability of a massive body to exert Newtonian gravitational forces on other bodies.
• Inertial mass (m) represents the Newtonian response of mass to forces.
• Rest energy (E0) represents the ability of mass to be converted into other forms of energy.
• The Compton wavelength (λ) represents the quantum response of mass to local geometry.

The central body in an orbital system can be defined as the one whose mass (M) is much larger than the mass of the orbiting body (m), or . This approximation is standard for planets orbiting the Sun or most moons and greatly simplifies equations. Under Newton's law of universal gravitation, if the distance between the bodies is r, the force exerted on the smaller body is:

$F={\frac {GMm}{r^{2}}}={\frac {\mu m}{r^{2}}}$ Thus only the product of G and M is needed to predict the motion of the smaller body. Conversely, measurements of the smaller body's orbit only provide information on the product, ?, not G and M separately. The gravitational constant, G, is difficult to measure with high accuracy, while orbits, at least in the solar system, can be measured with great precision and used to determine ? with similar precision.

For a circular orbit around a central body:

$\mu =rv^{2}=r^{3}\omega ^{2}={\frac {4\pi ^{2}r^{3}}{T^{2}}}\$ where r is the orbit radius, v is the orbital speed, ? is the angular speed, and T is the orbital period.

This can be generalized for elliptic orbits:

$\mu ={\frac {4\pi ^{2}a^{3}}{T^{2}}}\$ where a is the semi-major axis, which is Kepler's third law.

For parabolic trajectories rv2 is constant and equal to 2?. For elliptic and hyperbolic orbits , where ? is the specific orbital energy.

### General case

In the more general case where the bodies need not be a large one and a small one, e.g. a binary star system, we define:

• the vector r is the position of one body relative to the other
• r, v, and in the case of an elliptic orbit, the semi-major axis a, are defined accordingly (hence r is the distance)
• ? = Gm1 + Gm2 = ?1 + ?2, where m1 and m2 are the masses of the two bodies.

Then:

### In a pendulum

The standard gravitational parameter can be determined using a pendulum oscillating above the surface of a body as:

$\mu \approx {\frac {4\pi ^{2}r^{2}L}{T^{2}}}$ where r is the radius of the gravitating body, L is the length of the pendulum, and T is the period of the pendulum (for the reason of the approximation see Pendulum in mathematics).

## Solar system

### Geocentric gravitational constant

GM?, the gravitational parameter for the Earth as the central body, is called the geocentric gravitational constant. It equals .

The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s. Sagitov (1969) cites a range of values reported from 1960s high-precision measurements, with a relative uncertainty of the order of 10-6.

During the 1970s to 1980s, the increasing number of artificial satellites in Earth orbit further facilitated high-precision measurements, and the relative uncertainty was decreased by another three orders of magnitude, to about (1 in 500 million) as of 1992. Measurement involves observations of the distances from the satellite to Earth stations at different times, which can be obtained to high accuracy using radar or laser ranging.

### Heliocentric gravitational constant

GM, the gravitational parameter for the Sun as the central body, is called the heliocentric gravitational constant or geopotential of the Sun and equals .

The relative uncertainty in GM, cited at below 10-10 as of 2015, is smaller than the uncertainty in GM? because GM is derived from the ranging of interplanetary probes, and the absolute error of the distance measures to them is about the same as the earth satellite ranging measures, while the absolute distances involved are much bigger[].