 Wrapping (graphics)
Get Wrapping Graphics essential facts below. View Videos or join the Wrapping Graphics discussion. Add Wrapping Graphics to your PopFlock.com topic list for future reference or share this resource on social media.
Wrapping Graphics

In computer graphics, wrapping is the process of limiting a position to an area. A good example of wrapping is wallpaper, a single pattern repeated indefinitely over a wall. Wrapping is used in 3D computer graphics to repeat a texture over a polygon, eliminating the need for large textures or multiple polygons.

To wrap a position x to an area of width w, calculate the value $x'\equiv x{\pmod {w}}$ .

## Implementation

For computational purposes the wrapped value x' of x can be expressed as

$x'=x-\lfloor (x-x_{min})/(x_{max}-x_{min})\rfloor *(x_{max}-x_{min})$ where $x_{max}$ is the highest value in the range, and $x_{min}$ is the lowest value in the range.

Pseudocode for wrapping of a value to a range other than 0-1 is

 function wrap(X, Min, Max: Real): Real;
X := X - Int((X - Min) / (Max - Min)) * (Max - Min);
if X < 0 then //This corrects the problem caused by using Int instead of Floor
X := X + Max - Min;
return X;


Pseudocode for wrapping of a value to a range of 0-1 is

 function wrap(X: Real): Real;
X := X - Int(X);
if X < 0 then
X := X + 1;
return X;


Pseudocode for wrapping of a value to a range of 0-1 without branching is,

 function wrap(X: Real): Real;
return ((X mod 1.0) + 1.0) mod 1.0;